References

Studies describing pulse2percept:

[Beyeler2017]M Beyeler, GM Boynton, I Fine, A Rokem (2017). pulse2percept: A Python-based simulation framework for bionic vision. Proceedings of the 16th Python in Science Conference (SciPy), p.81-88, doi:10.25080/shinma-7f4c6e7-00c.

Studies referenced throughout the Documentation:

[Ahuja2008]AK Ahuja, MR Behrend, M Kuroda, MS Humayun, JD Weiland (2008). An in in vitro model of a retinal prosthesis. IEEE Trans Biomed Eng 55, 1744-1753.
[Al-Atabany2010]WT Al-Atabany, T Tong, PA Degenaar (2010). Improved content aware scene retargeting for retinitis pigmentosa patients. BioMedical Engineering OnLine, 9(1), 52.
[Benson2018]Benson NC, Winawer J (2018) Bayesian Analysis of Retinotopic Maps. eLife 2018, doi:10.1101/325597.
[Beyeler2019]M Beyeler, D Nanduri, JD Weiland, A Rokem, GM Boynton, I Fine (2019). A model of ganglion axon pathways accounts for percepts elicited by retinal implants. Scientific Reports 9(1):9199, doi:10.1038/s41598-019-45416-4.
[Curcio1990]CA Curcio, KR Sloan, RE Kalina, AE Hendrickson (1990). Human photoreceptor topography. Journal of Comparative Neurophysiology 292:497-523, doi:10.1002/cne.902920402.
[EricksonDavis2021]C Erickson-Davis, H Korzybska (2021). What do blind people “see” with retinal prostheses? Observations and qualitative reports of epiretinal implant users. PLOS ONE 16(2), doi:10.1371/journal.pone.0229189.
[Han2021]N Han, S Srivastava, A Xu, D Klein, M Beyeler (2021). Deep Learning–Based Scene Simplification for Bionic Vision. Augmented Humans Conference 2021, 45–54. <https://doi.org/10.1145/3458709.3458982>`_.
[Granley2021]Granley, J., & Beyeler, M. (2021). A Computational Model of Phosphene Appearance for Epiretinal Prostheses. International Conference of the IEEE Engineering in Medicine and Biology Society, doi:10.1109/EMBC46164.2021.9629663.
[Greenwald2009]Greenwald, S., Horsager A., Humayun M, Greenberg R., McMahon M., Fine I. (2009). Brightness as a Function of Current Amplitude in Human Retinal Electrical Simulation. Investigative Ophthalmology & Visual Science November 2009 Vol.50, 5017-5025, doi:10.1167/iovs.08-2897.
[Grinten2023]Maureen van der Grinten, Jaap de Ruyter van Steveninck, Antonio Lozano, Laura Pijnacker, Bodo Rückauer, Pieter Roelfsema, Marcel van Gerven, Richard van Wezel, Umut Güçlü, Yağmur Güçlütürk (2022). Biologically plausible phosphene simulation for the differentiable optimization of visual cortical prostheses. bioRxiv, doi:10.1101/2022.12.23.521749.
[Hayes2003]JS Hayes et al. (2003). Visually guided performance of simple tasks using simulated prosthetic vision. Artificial Organs 27, 1016-1028.
[Horsager2009]A Horsager, SH Greenwald, JD Weiland, MS Humayun, RJ Greenberg, MJ McMahon, GM Boynton, I Fine (2009). Predicting visual sensitivity in retinal prosthesis patients. Investigative Ophthalmology & Visual Science 50(4):1483-1491.
[Jansonius2009]NM Jansonius, J Nevalainen, B Selig, LM Zangwill, PA Sample, WM Budde, JB Jonas, WA Lagreze, PJ Airaksinen, R Vonthein, LA Levin, J Paetzold, U Schiefer (2009). A mathematical description of nerve fiber bundle trajectories and their variability in the human retina. Vision Research 49(17), 2157-63, doi:10.1016/j.visres.2009.04.029.
[Layton2014]LN Ayton, PJ Blamey, RH Guymer, CD Luu, DAX Nayagam, NC Sinclair, MN Shivdasani, J Yeoh, MF McCombe, RJ Briggs, NL Opie, J Villalobos, PN Dimitrov, M Varsamidis, MA Petoe, CD McCarthy, JG Walker, N Barnes, AN Burkitt, CE Williams, RK Shepherd, PJ Allen, for the Bionic Vision Australia Research Consortium (2014). First-in-human trial of a novel suprachoroidal retinal prosthesis. PLoS ONE 9(12): e115239.
[Lorach2015]H Lorach, G Goetz, R Smith, X Lei, Y Mandel, T Kamins, K Mathieson, P Huie, J Harris, A Sher, D Palanker (2015). Photovoltaic restoration of sight with high visual acuity. Nature Medicine 21(5):476-482
[Luo2016]YH Luo, JJ Zhong, M Clemo, L da Cruz (2016). Long-term Repeatability and Reproducibility of Phosphene Characteristics in Chronically Implanted Argus(R) II Retinal Prosthesis Subjects. Am J Ophthalmol, doi:10.1016/j.ajo.2016.07.021.
[Nanduri2012]D Nanduri, I Fine, A Horsager, GM Boynton, MS Humayun, RJ Greenberg, JD Weiland (2012), Frequency and amplitude modulation have different effects on the percepts elicited by retinal stimulation. Investigative Ophthalmology & Visual Science 53:205-214, doi:10.1167/iovs.11-8401.
[Palanker2020]D Palanker, Y LeMer, S Mohand-Said, M Muqit, JA Sahel (2020). Photovoltaic restoration of central vision in atrophic age-related macular degeneration. Ophthalmology 1-8
[PerezFornos2012]A Perez Fornos, J Sommerhalder, L da Cruz, J Alain Sahel, S Mohand-Said, F Hafezi, M Pelizzone (2012). Temporal Properties of Visual Perception on Electrical Stimulation of the Retina. Investigative Ophthalmology & Visual Science, doi: 10.1167/iovs.11-9344.
[Petoe2021]MA Petoe, SA Titchener, M Kolic, WG Kentler, CJ Abbott, DAX Nayagam, EK Baglin, J Kvansakul, N Barnes, JG Walker, SB Epp, KA Young, LN Ayton, CD Luu, PJ Allen (2021). A Second-Generation (44-Channel) Suprachoroidal Retinal Prosthesis: Interim Clinical Trial Results. Translational Vision Science & Technology, doi: 10.1167/tvst.10.10.12.
[Polimeni2006]Polimeni, J. R., Balasubramanian, M., & Schwartz, E. L. (2006). Multi-area visuotopic map complexes in macaque striate and extra-striate cortex. Vision research, 46(20), 3336-3359. doi: 10.1016/j.visres.2006.03.006.
[Stingl2013]K Stingl, KU Bartz-Schmidt, D Besch, A Braun, A Bruckmann, F Gekeler, U Greppmaier, S Hipp, G Hortdorfer, C Kernstock, A Koitschev, A Kusnyerik, H Sachs, A Schatz, KT Stingl, T Peters, B Wilhelm, E Zrenner (2013). Artificial vision with wirelessly powered subretinal electronic implant alpha-IMS. Proc R Soc B 280:20130077.
[Stingl2017]K Stingl, R Schippert, KU Bartz-Schmidt, D Besch, CL Cottriall, TL Edwards, F Gekeler, U Greppmaier, K Kiel, A Koitschev, L Kuhlewein, RE MacLaren, JD Ramsden, J Roider, A Rothermel, H Sachs, GS Schroder, J Tode, N Troelenberg, E Zrenner (2017). Interim results of a multicenter trial with the new electronic subretinal implant Alpha AMS in 15 patients blind from inherited retinal degenerations. Frontiers in Neuroscience 11:445.
[Thompson2003]RW Thompson Jr, GD Barnett, MS Humayun, G Dagnelie (2003). Facial recognition using simulated prosthetic pixelized vision. Investigative Ophthalmolology & Visual Science 44, 5035-5042.
[Watson2014]A.B. Watson (2014). A formula for human retinal ganglion cell receptive field density as a function of visual field location. Journal of Vision 14(7):1-17, doi:10.1167/14.7.15.
[Weitz2015]Weitz, A. C., Nanduri, D., Behrend, M. R., Gonzalez-Calle, A., Greenberg, R. J., Humayun, M. S., … & Weiland, J. D. (2015). Improving the spatial resolution of epiretinal implants by increasing stimulus pulse duration. Science translational medicine, 7(318), 318ra203-318ra203.
[WileyWebster1982]JD Wiley, JG Webster (1982). Analysis and control of the current distribution under circular dispersive electrodes. IEEE Transactions on Biomedical Engineering 5, 381-385.
[Xu2021]H Xu, X Zhong, C Pang, W Chen, X Wang, S Li, Y Hu, DS Sagan, PT Weiss, Y Yao, J Xiang, MS Dayan, MS Humayun, YC Tai (2021). First Human Results With the 256 Channel Intelligent Micro Implant Eye (IMIE 256). Translational Vision Science & Technology, 10(10), 14–14.
[Yue2020]L Yue, V Wuyyuru, A Gonzalez-Calle, JD Dorn, MS Humayun (2020). Retina–electrode interface properties and vision restoration by two generations of retinal prostheses in one patient—one in each eye. Journal of Neural Engineering 026020.