pulse2percept.model_selection.optimizers¶
BaseOptimizer
, GridSearchOptimizer
, FunctionMinimizer
,
NotFittedError
, ParticleSwarmOptimizer
Classes
BaseOptimizer (estimator, search_params, **params) |
Abstract base class for all optimizers. |
FunctionMinimizer (estimator, search_params, …) |
Loss function minimization |
GridSearchOptimizer (estimator, …) |
Performs a grid search |
ParticleSwarmOptimizer (estimator, …) |
Performs particle swarm optimization |
Exceptions
NotFittedError |
Exception class used to raise if optimizer is used before fitting |
-
class
pulse2percept.model_selection.optimizers.
BaseOptimizer
(estimator, search_params, **params)[source]¶ Abstract base class for all optimizers.
New in version 0.7.
Parameters: - estimator (
sklearn.base.estimator
) – A scikit-learn estimator, such as a classifier or regressor, that containsfit
andpredict
methods. - serch_params (dict) – Initial values of all search parameters.
- has_loss_function ({False | True}) – If True, the estimator’s scoring function is really a loss function (where smaller values indicate better performance) rather than a true scoring function.
- verbose ({False | True}) – If True, will print debug information.
-
fit
(X, y=None, fit_params=None)[source]¶ Optimizes the values of the search parameters
Runs the optimizer to determine the optimal values of the search parameters. After optimization, two new attributes are available:
best_score
: contains the best score achieved with optimal parameter valuesbest_params
: a dict containing the optimal parameter values
Parameters: - X (array-like of shape (n_samples, n_features)) – Sample data.
- y (array-like of shape (n_samples,) or (n_samples, n_outputs)) – True labels for X.
- fit_params (dict, optional) – Additional parameters that should be passed to the estimator’s
fit
method.
-
is_fitted
¶ A flag indicating whether the model has been fitted
-
predict
(X)[source]¶ Predicts the labels of X
Uses the estimator’s
predict
method to predict the labels of X.Parameters: X (array-like of shape (n_samples, n_features)) – Sample data. Returns: y_pred (array-like of shape (n_samples,) or (n_samples, n_outputs)) – Predicted labels for X.
-
score
(X, y, sample_weight=None)[source]¶ Return the score of the model on the data X
Uses the estimator’s
score
method to determine the model score.Parameters: - X (array-like of shape (n_samples, n_features)) –
- y (array-like of shape (n_samples,) or (n_samples, n_outputs)) – True labels for X.
Returns: score (float)
- estimator (
-
class
pulse2percept.model_selection.optimizers.
FunctionMinimizer
(estimator, search_params, **params)[source]¶ Loss function minimization
Function minimization using SciPy’s minimize to find the
search_params
that optimize anestimator
’s score.New in version 0.7.
Parameters: - estimator (
sklearn.base.estimator
) – A scikit-learn estimator, such as a classifier or regressor, that containsfit
andpredict
methods. - serch_params (dict of tupels (lower bound, upper bound)) – Dictionary of tupels containing the lower and upper bound of values for each search parameter.
- search_params_init (dict of floats, optional) – Initial values of all search parameters. If None, initialize to midpoint between lower and upper bounds
- method (str, optional) – Solving method to use (e.g., ‘Nelder-Mead’, ‘Powell’, ‘L-BFGS-B’)
- tol (float, optional) – Tolerance for termination. For detailed control, use solver-specific options.
- options (dict, optional) – A dictionary of solver-specific options.
- has_loss_function ({False | True}) – If True, the estimator’s scoring function is really a loss function (where smaller values indicate better performance) rather than a true scoring function.
- verbose ({False | True}) – If True, will print debug information.
-
fit
(X, y=None, fit_params=None)[source]¶ Optimizes the values of the search parameters
Runs the optimizer to determine the optimal values of the search parameters. After optimization, two new attributes are available:
best_score
: contains the best score achieved with optimal parameter valuesbest_params
: a dict containing the optimal parameter values
Parameters: - X (array-like of shape (n_samples, n_features)) – Sample data.
- y (array-like of shape (n_samples,) or (n_samples, n_outputs)) – True labels for X.
- fit_params (dict, optional) – Additional parameters that should be passed to the estimator’s
fit
method.
-
is_fitted
¶ A flag indicating whether the model has been fitted
-
predict
(X)[source]¶ Predicts the labels of X
Uses the estimator’s
predict
method to predict the labels of X.Parameters: X (array-like of shape (n_samples, n_features)) – Sample data. Returns: y_pred (array-like of shape (n_samples,) or (n_samples, n_outputs)) – Predicted labels for X.
-
score
(X, y, sample_weight=None)[source]¶ Return the score of the model on the data X
Uses the estimator’s
score
method to determine the model score.Parameters: - X (array-like of shape (n_samples, n_features)) –
- y (array-like of shape (n_samples,) or (n_samples, n_outputs)) – True labels for X.
Returns: score (float)
- estimator (
-
class
pulse2percept.model_selection.optimizers.
GridSearchOptimizer
(estimator, search_params, **params)[source]¶ Performs a grid search
Exhaustive search over specified parameter values for an estimator.
New in version 0.7.
Parameters: - estimator (
sklearn.base.estimator
) – A scikit-learn estimator, such as a classifier or regressor, that containsfit
andpredict
methods. - serch_params (dict) – Dictionary of search parameters with a discrete number of values for each.
- has_loss_function ({False | True}) – If True, the estimator’s scoring function is really a loss function (where smaller values indicate better performance) rather than a true scoring function.
- verbose ({False | True}) – If True, will print debug information.
-
fit
(X, y=None, fit_params=None)[source]¶ Optimizes the values of the search parameters
Runs the optimizer to determine the optimal values of the search parameters. After optimization, two new attributes are available:
best_score
: contains the best score achieved with optimal parameter valuesbest_params
: a dict containing the optimal parameter values
Parameters: - X (array-like of shape (n_samples, n_features)) – Sample data.
- y (array-like of shape (n_samples,) or (n_samples, n_outputs)) – True labels for X.
- fit_params (dict, optional) – Additional parameters that should be passed to the estimator’s
fit
method.
-
is_fitted
¶ A flag indicating whether the model has been fitted
-
predict
(X)[source]¶ Predicts the labels of X
Uses the estimator’s
predict
method to predict the labels of X.Parameters: X (array-like of shape (n_samples, n_features)) – Sample data. Returns: y_pred (array-like of shape (n_samples,) or (n_samples, n_outputs)) – Predicted labels for X.
-
score
(X, y, sample_weight=None)[source]¶ Return the score of the model on the data X
Uses the estimator’s
score
method to determine the model score.Parameters: - X (array-like of shape (n_samples, n_features)) –
- y (array-like of shape (n_samples,) or (n_samples, n_outputs)) – True labels for X.
Returns: score (float)
- estimator (
-
exception
pulse2percept.model_selection.optimizers.
NotFittedError
[source]¶ Exception class used to raise if optimizer is used before fitting
This class inherits from both ValueError and AttributeError to help with exception handling and backward compatibility.
-
name
¶ attribute name
-
obj
¶ object
-
with_traceback
()¶ Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.
-
-
class
pulse2percept.model_selection.optimizers.
ParticleSwarmOptimizer
(estimator, search_params, **params)[source]¶ Performs particle swarm optimization
Optimizes the search parameter values using a particle swarm.
New in version 0.7.
Parameters: - estimator (
sklearn.base.estimator
) – A scikit-learn estimator, such as a classifier or regressor, that containsfit
andpredict
methods. - serch_params (dict of tupels (lower bound, upper bound)) – Dictionary of tupels containing the lower and upper bound of values for each search parameter.
- swarm_size (int, optional, default: 10 * number of search params) – The number of particles in the swarm.
- max_iter (int, optional, default: 100) – Maximum number of iterations for the swarm to search.
- min_func (float, optional, default: 0.01) – The minimum change of swarm’s best objective value before the search terminates.
- min_step (float, optional, default: 0.01) – The minimum step size of swarm’s best objective value before the search terminates.
- has_loss_function ({False | True}) – If True, the estimator’s scoring function is really a loss function (where smaller values indicate better performance) rather than a true scoring function.
- verbose (bool, optional, default: True) – Flag whether to print more stuff
-
fit
(X, y=None, fit_params=None)[source]¶ Optimizes the values of the search parameters
Runs the optimizer to determine the optimal values of the search parameters. After optimization, two new attributes are available:
best_score
: contains the best score achieved with optimal parameter valuesbest_params
: a dict containing the optimal parameter values
Parameters: - X (array-like of shape (n_samples, n_features)) – Sample data.
- y (array-like of shape (n_samples,) or (n_samples, n_outputs)) – True labels for X.
- fit_params (dict, optional) – Additional parameters that should be passed to the estimator’s
fit
method.
-
is_fitted
¶ A flag indicating whether the model has been fitted
-
predict
(X)[source]¶ Predicts the labels of X
Uses the estimator’s
predict
method to predict the labels of X.Parameters: X (array-like of shape (n_samples, n_features)) – Sample data. Returns: y_pred (array-like of shape (n_samples,) or (n_samples, n_outputs)) – Predicted labels for X.
-
score
(X, y, sample_weight=None)[source]¶ Return the score of the model on the data X
Uses the estimator’s
score
method to determine the model score.Parameters: - X (array-like of shape (n_samples, n_features)) –
- y (array-like of shape (n_samples,) or (n_samples, n_outputs)) – True labels for X.
Returns: score (float)
- estimator (